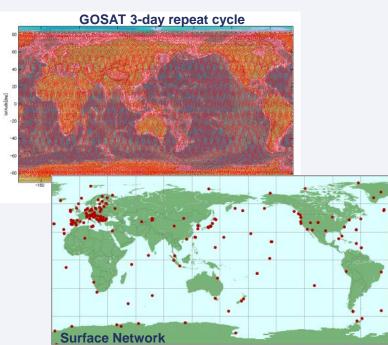
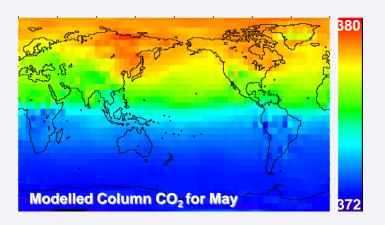
Measuring Greenhouse Gases from Space

Hartmut Boesch Earth Observation Science Group Space Research Centre Department of Physics and Astronomy University of Leicester

National Centre for Earth Observation

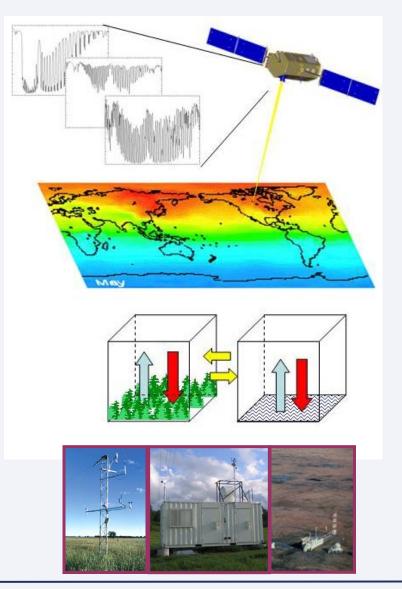

Space based Observations of GHGs


- Primary benefit:
 - Uniform coverage of the globe
 - High spatial resolution
- Primary challenges:
 - Sensitivity to GHGs in boundary layer
 - High precision needed to quantify small changes in columns (<0.25%)
 - Need to minimize spatial & temporal biases
- Future Challenges

National Centre for

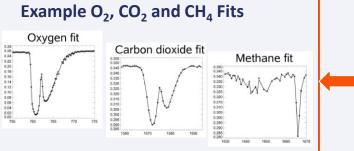
Earth Observation

- Persistent cloud cover
- Need for improved time resolution & spatial coverage
- Discrimination of the near-surface layer



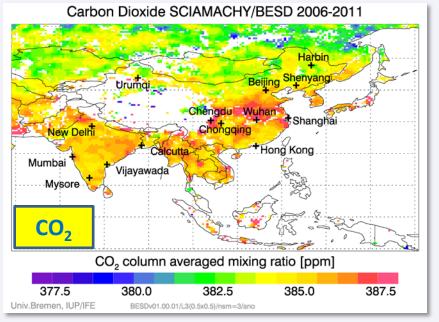
Measurement Approach

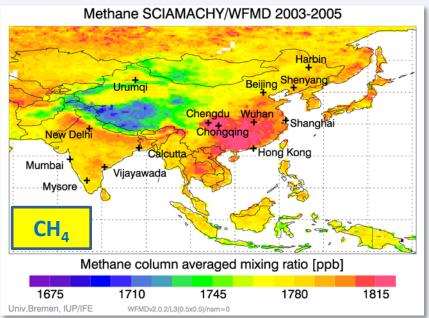
- Collect high-resolution spectra of CO₂ and O₂ absorption in reflected sunlight
 - Mitigates effects from scattering and topography
 - Provides high sensitivity to air near the surface
- Use these data to resolve variations in the column averaged CO₂ dry air mole fraction, X_{CO2} over the sunlit hemisphere
- Validate measurements to ensure X_{CO2} accuracies ('tie data to WMO standard')



SCIAMACHY - First Satellite Instrument to Measure CH₄ and CO₂ Columns from Space

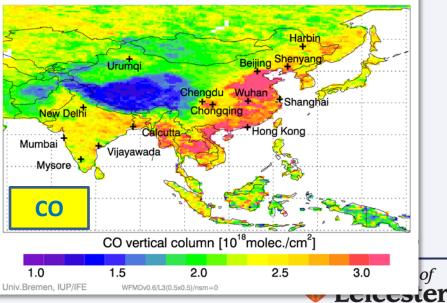
- SCIAMACHY onboard ENVISAT (launched in 2002, ended 2012)
- 8 Channel UV-Vis-NIR imaging spectrometer
- □ Large nadir footprint (30 × 60 km²)
- Low spectral resolution (0.2-1.5 nm)
- Ch. 7 + 8 contain highly resolved CH₄ and CO₂ bands, but channels are strongly impacted by build-up of ice layer on detector



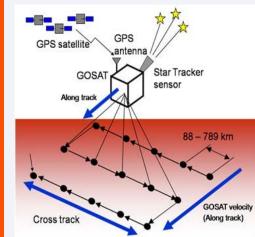

NCEO/CEOI-ST JOINT SCIENCE CONFERENCE 2014

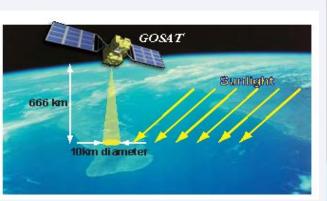
Wavelength [nm]

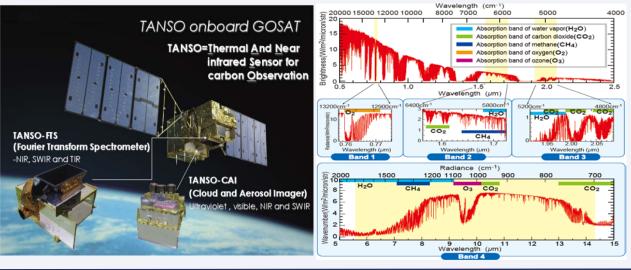
",Carbon Gases" from SCIAMACHY



Carbon monoxide SCIAMACHY/WFMD 2004

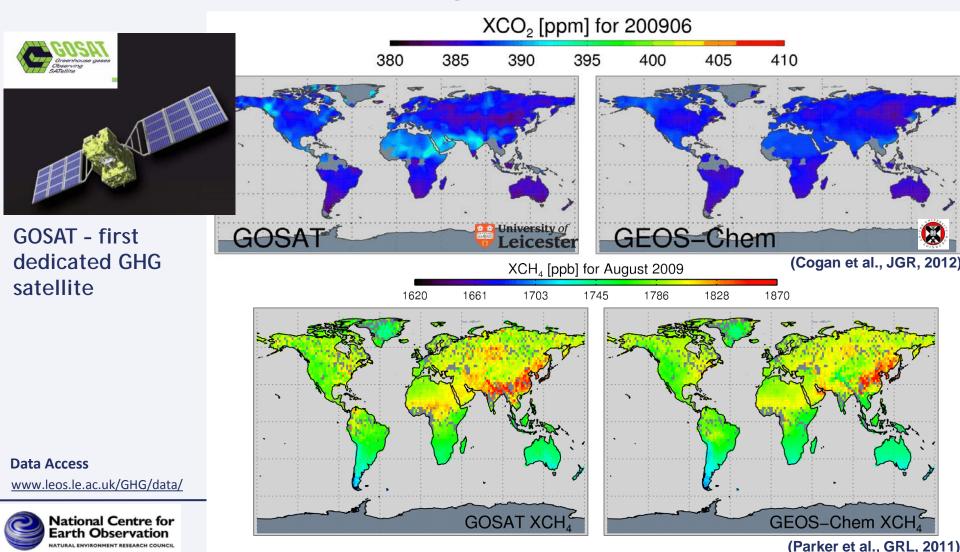

Earth Observation



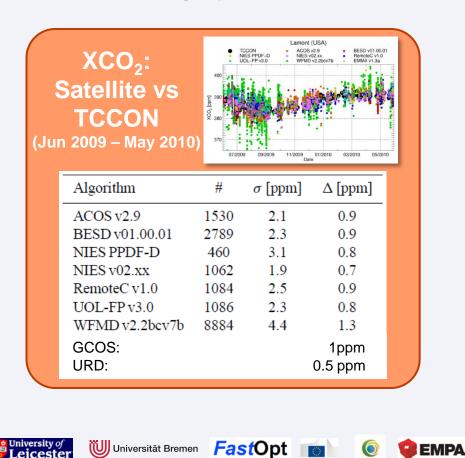

Greenhouse gases Observing SATellite < 📶

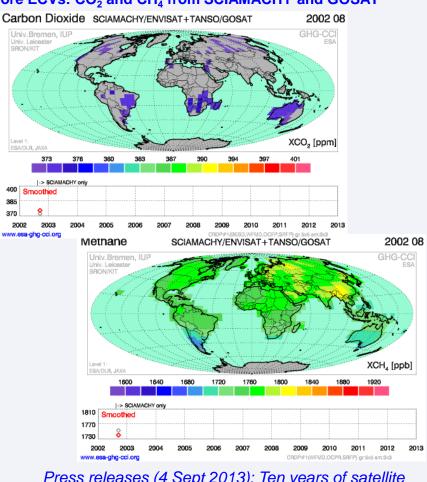
Mission objectives:

- 1) To monitor the density of greenhouse gases precisely and frequently worldwide.
- To study the absorption and emission levels of greenhouse gases per continent or large country over a certain period of time.
- 3) To develop and establish advanced technologies that are essential for precise greenhouse-gas observations.



Testing Model Calculations with GOSAT


Dedicated satellite missions provide unprecedented global view of release and uptake of CO₂ and CH₄ by surface processes to critically test and improve models and to track main emission regions



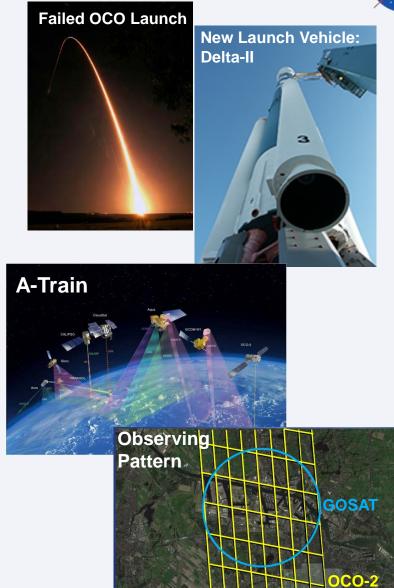
ESA Climate Change Initiative (GHG CCI)

The goal of the GHG-CCI project is to generate and deliver the Essential Climate Variable (ECV) "Greenhouse Gases" (GHG) meeting GCOS (Global Climate Observing System) requirements

Press releases (4 Sept 2013): Ten years of satellite observations of greenhouse gases (CO_2 and methane)

SRON

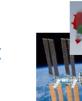
NCEO/CEOI-ST JOINT SCIENCE CONFERENCE 2014


LSCE

Max-Planck-Institut

Contract CO2 Mission: NASA OCO-2

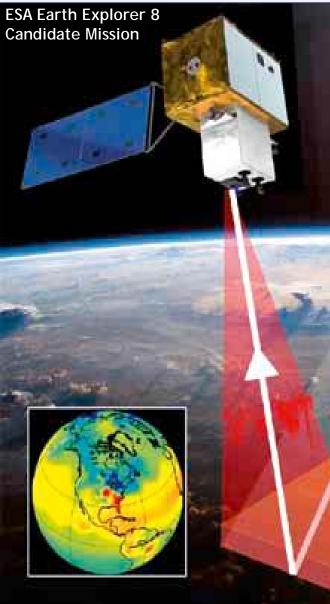
- NASA decided to build-to-print "Carbon Copy" of OCO (OCO-2) scheduled for launch 1 July 2014
- OCO-2 will fly at the head of A-Train, but 217 km East of AQUA (joint with Cloudsat and Calipso)
- OCO-2 will deliver
 - Smaller footprints (3km²)
 - Higher precision (0.2-0.3%)
 - Near-global sampling over continents and ocean (sunglint and nadir sounding)
- VK Links: OCO-2 STM (Boesch, Palmer)

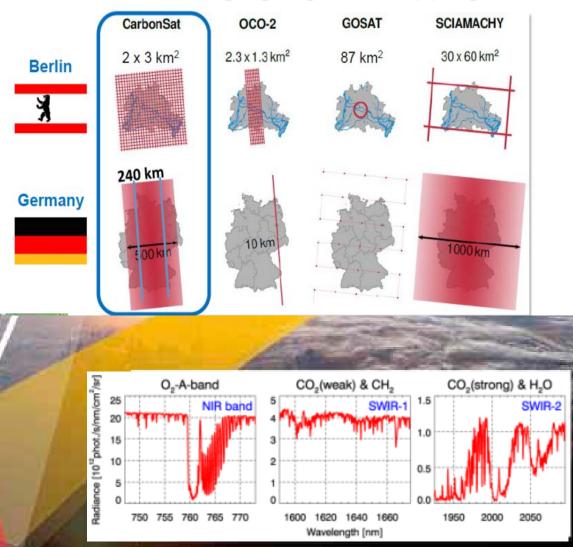


The next Generation of SWIR CO₂ Missions


- **TanSat (2015)** First Chinese greenhouse gas satellite
 - Uses same O_2 and CO_2 bands and similar orbit as OCO-2
 - Cloud and Aerosol Imager: 0.38, 0.67, 0.87, 1.38 and 1.61μm channels
- **OCO-3** *(2017) OCO-2 spare instrument, to be deployed on ISS
 - First solar CO₂ instrument to fly in a low inclination, precessing orbit
- **GOSAT-2 (2017)** High precision CO_2 , CH_4 , CO, and NO_2
 - Improved precision (0.5 ppm), spatial resolution, and range of ocean glint spot expected to improve coverage
 - Exploring additions of an FTIR channel to measure CO, a wider NIR channel for chlorophyll fluorescence, and a UV channel for NO₂
- **CNES MicroCarb (2019)** high sensitivity at low cost
 - Flies in the A-Train, providing data continuity for OCO-2
 - ~1/2 to 1/3 of the size (and cost) of OCO-2, with similar sensitivity.
 - Enables constellations of low-cost CO₂ monitoring satellites
- **ESA CarbonSat (2022)** CO₂ and CH₄ at high resolution over a broad swath
- Combines a high precision target (1 ppm) over a broad swath (160 to 500 km) to yield complete coverage of sunlit hemisphere at high (Slide from resolution (2 km x 2 km) on 6-12 day time scales

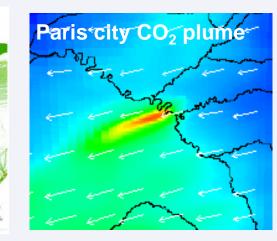
D. Crisp, JPL)

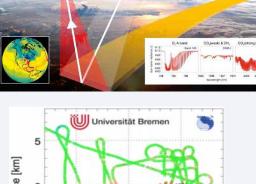


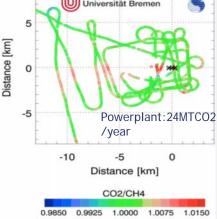


Carbonsat: Towards Increased Coverage and Denser Sampling

CarbonSat: imaging & global mapping




CarbonSat Science Goals

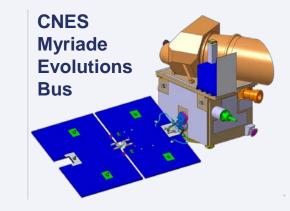

CarbonSat aims to support better separating natural and anthropogenic fluxes with global XCO2 and XCH4 (secondary: vegetation fluorescence) data and "imaging" of strong localised CO_2 and CH_4 emission areas.

In combination with inverse modelling and robust validation (TCCON) this will address:

- Better top-down constrain on regional and country scale flux inversions (mainly natural fluxes)
- New: MegaCity scale top-down constraints
- New: local scale top-down constraint

UK Members of CarbonSat ESA MAG (Boesch, Hayman)

kT CO₂ for 2009

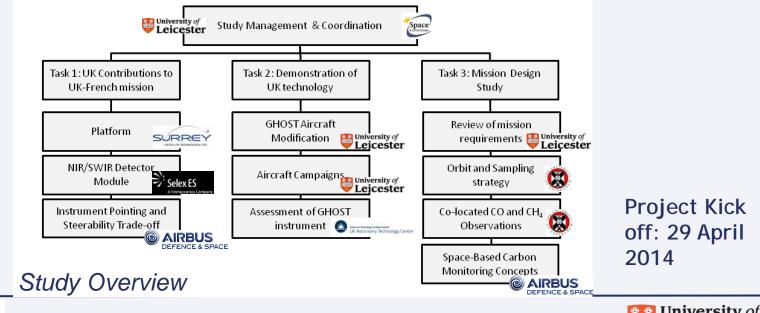

NCEO/CEOI-ST JOINT SCIENCE CONFERENCE 2014

Global CO₂ & CH₄ from space

CNES MicroCarb Mission

- Goal: Development of compact and affordable instrument to measure CO₂ for an accommodation on a Micro-Satellite:
 - Demonstrator for future constellation and monitoring concepts
 - Priority given to accuracy rather than high spatial coverage and resolution
- Observation concept similar to OCO-2
 - 3 channel grating spectrometer with very high resolution
- Phase A completed (end of 2013)
- Mission can be developed in a limited time (5 years from start to launch) and budget

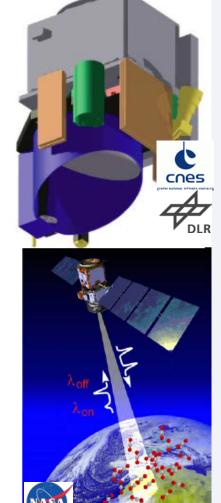
nes



Development of a Bilateral Carbon Mission

UKSA/CEOI funded-study to develop a bilateral carbon mission concept with CNES

- Develop specific solutions for UK industry contributions to a bilateral carbon mission with CNES based on the MicroCarb concept
- Demonstrate cutting-edge UK instrument technology for GHG measurements
- Evaluate and optimize the science return of the mission
- Assess potential of constellation concepts and for commercial downstream services



Active GHG Missions

Active missions allow full-column observations during day and night during all seasons (high latitudes in winter time) without potential biases from aerosol and cloud scattering

- MERLIN (2019): First CH₄ LIDAR (IPDA)
 - Science focus: Precise (1-2%) X_{CH4} retrievals for studies of wetland emissions, inter-hemispheric gradients and continental scale annual CH₄ budgets
 - Orbit: 6AM/6PM, 28-day repeat
- ASCENDS* (2021): First CO₂ LIDAR
 - Precise (0.3%) global measurements of X_{CO2}, over days, nights, including winter high latitude regions to quantify continental and oceanic CO₂ sources and sinks
 - Should provide many useful soundings in partially cloudy regions because of near vertical sounding

Current and Planned GHG Missions

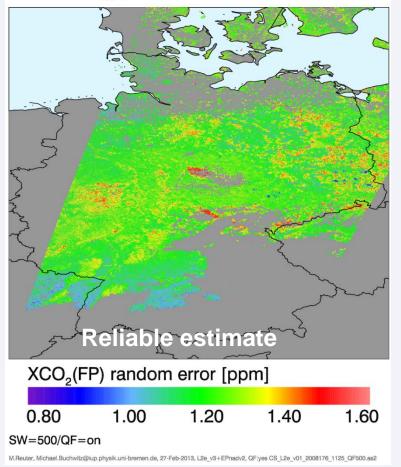
Satellite, Instrument (Agencies)	CO ₂	CH4	FOV	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
ENVISAT SCIAMACHY (ESA)	٠	•	30x60 km ²														
GOSAT TANSO-FTS (JAXA-NIES-MOE)	٠	•	10.5 km (d)														
OCO-2 (NASA)	٠		1.29x2.25 km ²														
Sentinel-5P TROPOMI (ESA)		•	7x7 km ²														
TanSat (CAS-MOST-CMA)	٠		1x2 km ²														
OCO-3 (NASA)	٠		~4 km ²							ISS							
GOSAT-2 TANSO-FTS (JAXA-NIES-MOE)	٠	•	10.5 km (d)														
MERLIN (DLR-CNES)		•	0.135 km (w)														
MicroCarb (CNES)	٠		25 km ²														
PCW-PHEOS-FTS (CSA)	?	•	10x10 km ²									Н	EO co	ntinuo	us ~5()-90°N	only
MetOpSG Sentinel-5 (ESA-EUMETSAT)		•	7x7 km ²														
Carbon Sat (ESA)	٠	•	2x3 km ²														
ASCENDS (NASA)	٠		0.100 km (w)														
GEO-CAPE (NASA)		•	4x4 km ²												G	EO 10	W°0
(GEOCARB) Based on information from various se Proposed or funding not co	d = diameter w = width of a narrow strip along orbit track	Oper	ating	Planr	ned	Consi	dered	l Mi	ssion	Exten	sion						

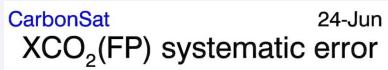
- A coordinated global network of surface and space-based CO₂ and CH₄ monitoring systems is needed for long-term monitoring of sources and sink
- Heterogeneous, un-coordinated constellation might be possible leading to global coverage every day in near future
- Longer-term need: coordinated constellation

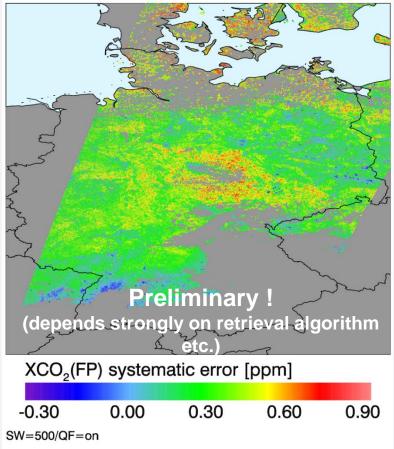
lational Centre

Earth Observation

Concluding Remarks


- Feasibility of greenhouse gas remote sensing from satellites is now well established and data products have reached a high level of maturity (e.g. ESA CCI project) and are extensively used by modelling and data assimilation groups
- First dedicated GHG missions:
 - JAXA/NIES: First dedicated GHG sensor launched in 2009 (GOSAT)
 - OCO-2 re-launch in July 2014
- Over the next decade, a succession of missions with a range of CO_2 and CH_4 measurement capabilities will be deployed in low Earth orbit
 - Each mission is required to obtain a continuous presence
 - Inclusion of CH₄ column observations in Copernicus Space Segment (Sentinel) but not CO₂
 - Missions such as EE8 Carbonsat (or GEO missions) can provide much improved coverage and additional constraints on city and local scale
 - Active missions (new challenge) can complement passive missions (e.g. winter high latitudes, boreal wetlands)


arth Observation



GrbonSat CarbonSat: Germany Overpass

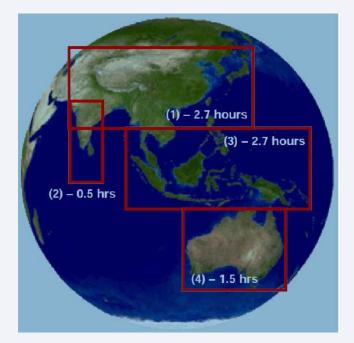
CarbonSat 24-Jun XCO₂(FP) random error

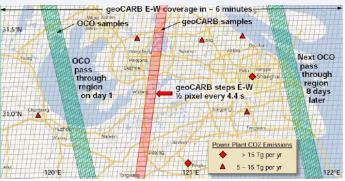
 $M.Reuter, Michael.Buchwitz@iup.physik.uni-bremen.de, 27-Feb-2013, L2e_v3+EPnadv2, QF:yes CS_L2e_v01_2008176_1125_QF500.as2$

Buchwitz et al., AMT, 2013

National Centre for

Earth Observation





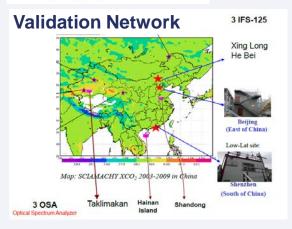
GEO Stationary GHG Missions

- GeoCarb is a proposal for a Geostationary mission at nominal longitude of 110 E (±10) over Asian-Pacific region.
- GeoCarb is a multi-channel grating spectrometer covering O₂ A Band, 1.6, 2 and 2.3 micron bands with high resolution
- GeoCARB employs a steerable mirror system to scan over a region with complete coverage in <8hours</p>
- Spatial resolution: 3 km at sub-satellite point

CO2 Only Mission: TANSAT

Chinese Carbon Satellite

Mission and Payload very similar to OCO-2:


- Lower resolution in 1.6 and 2 micron bands to avoid undersampling
- Aerosol imager CAPI: 5-channel high resolution imager
- Calibration requirements reduced compared to OCO-2
- Significant validation effort in China:
 - 3 Bruker 125 FTS
 - 3 Optical Spectrum Analyzer
 - Large aerosol network
- Planned launch: Mid 2016
- UK Links: ESA Dragon 3 Collaboration with TanSat Team (Boesch, Palmer)

760nm Prototype

Electrical and thermal experiment

